

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
[bookmark: _GoBack]Instruction plan : C++17 Developer
Course Overview
This C++17 Developer course is designed for experienced programmers to deepen their expertise in modern C++ development. The course focuses on new features introduced in C++17, advanced programming techniques, and their application in real-world scenarios. Real-world STAR (Situation, Task, Action, Result) examples will illustrate the application of C++17 features to solve industry problems.

Course Objectives
By the end of this course, participants will:
1. Master C++17 Features: Learn new features such as structured bindings, std::optional, and std::filesystem.
2. Implement Advanced Techniques: Work with templates, constexpr, and smart pointers.
3. Write Clean and Efficient Code: Apply C++17 features to improve readability, safety, and performance.
4. Solve Real-World Problems: Use C++17 to address challenges in fields such as finance, gaming, and systems programming.
5. Develop Industry-Standard Applications: Build software projects using modern C++ best practices.

Course Structure

Module 1: Introduction to C++17 and Structured Bindings
· Objective: Understand the new features in C++17 and apply structured bindings for cleaner code.
· Topics Covered:
· Overview of C++17 updates.
· Structured bindings for tuples and pairs.
· Auto declarations and improved type inference.
· STAR Example:
· Situation: A gaming company needed to refactor code that extracted values from complex structures.
· Task: Improve code readability and reduce errors.
· Action: Implemented structured bindings in key algorithms.
· Result: Achieved a 25% reduction in debugging time and cleaner codebase reviews.
· Learning Activity:
· Refactor a program extracting values from a std::map using structured bindings.
· Assignment:
· Write a function that processes a vector of pairs using structured bindings and improves readability.

Module 2: std::optional and Error Handling
· Objective: Use std::optional to handle optional values and avoid null pointer issues.
· Topics Covered:
· Introduction to std::optional.
· Safe handling of optional return values.
· Comparison with traditional error-handling approaches.
· STAR Example:
· Situation: A banking application faced crashes due to unhandled null pointers in transaction processing.
· Task: Improve reliability of data handling functions.
· Action: Replaced raw pointers with std::optional.
· Result: Reduced runtime crashes by 50% and improved system reliability.
· Learning Activity:
· Refactor a legacy function with nullable returns to use std::optional.
· Assignment:
· Create a library management function that uses std::optional to safely retrieve book details.

Module 3: Filesystem API and Practical Applications
· Objective: Explore std::filesystem for effective file and directory manipulation.
· Topics Covered:
· Navigating directories and handling files.
· Cross-platform file operations.
· Real-world file management tasks.
· STAR Example:
· Situation: A media company needed a robust tool to organize and process large directories of video files.
· Task: Automate the cleanup and renaming of files.
· Action: Developed a script using std::filesystem for directory traversal and file renaming.
· Result: Saved 20 hours of manual effort weekly.
· Learning Activity:
· Write a program to list all files in a directory with their sizes.
· Assignment:
· Create a file management tool that backs up all .txt files in a directory to a specific folder.

Module 4: Template Enhancements and Compile-Time Programming
· Objective: Utilize template enhancements and compile-time features for efficient code.
· Topics Covered:
· Variadic templates and fold expressions.
· Constexpr if statements.
· Practical applications in library development.
· STAR Example:
· Situation: An analytics company needed faster compile-time validations for data models.
· Task: Simplify and optimize template logic.
· Action: Used constexpr and fold expressions to validate data structures at compile-time.
· Result: Improved compile-time checks by 30% and reduced runtime errors significantly.
· Learning Activity:
· Develop a templated function that calculates the sum of an arbitrary number of arguments using fold expressions.
· Assignment:
· Build a type-safe compile-time calculator using constexpr if and variadic templates.

Module 5: Advanced Use Cases and Real-World Applications
· Objective: Apply C++17 features to industry-relevant scenarios in gaming, finance, and systems programming.
· Topics Covered:
· Using smart pointers and RAII (Resource Acquisition Is Initialization).
· Optimizing algorithms with parallel STL.
· Implementing type-safe APIs.
· STAR Example:
· Situation: A fintech company needed a high-performance trading system to handle real-time data streams.
· Task: Build a robust, low-latency module for market data processing.
· Action: Leveraged C++17 parallel algorithms and optimized resource handling with smart pointers.
· Result: Achieved a 35% performance boost and met regulatory compliance.
· Learning Activity:
· Implement a stock market simulation using parallel STL for sorting and analyzing trade data.
· Assignment:
· Build a memory-efficient and high-performance server module using smart pointers and optimized algorithms.

Conclusion
Recap and Final Project
Participants will review key topics and apply them in a capstone project. They will build a complete application, such as:
· A filesystem-based backup and restore tool for personal data.
· A real-time analytics dashboard for stock market trends.
Outcome
The course equips developers with advanced C++17 knowledge to write robust, scalable, and industry-standard applications. They will leave with hands-on experience and the ability to solve real-world challenges using modern C++ techniques

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




